Spatial patterning of nanofibrous collagen scaffolds modulates fibroblast morphology

Author:

Suter Naiana,Stebel Sophie,Rianna Carmela,Radmacher Manfred,Brüggemann DorotheaORCID

Abstract

Abstract Current knowledge about cell-biomaterial interactions is often based on two-dimensional (2D) cell culture systems like protein-coated glass slides. However, such smooth surfaces cannot mimic the nanofibrous environment of the native extracellular matrix (ECM). It is therefore a major challenge to transfer the results from 2D surfaces to 3D protein scaffolds with biomimetic nanofiber architecture. To understand the influence of different protein topographies on the cell response we introduce a new process to fabricate binary collagen scaffolds of variable thickness with spatially controlled regions of nanofibrous and smooth topography. We used pH-induced self-assembly to prepare collagen nanofibers with diameters between 130 and 150 nm on glass surfaces, which were partly covered with a polymer mask. After cross-linking with glutaraldehyde, smooth collagen films were prepared on the remaining glass regions. Atomic force microscopy revealed a much lower surface roughness of smooth collagen compared to nanofibers. Subsequently, we studied the viability, morphology and migration of 3T3 fibroblasts on both collagen topographies. We found small, elongated fibroblasts with few, long filopodia on collagen nanofibers whereas large, flat fibroblasts with many short filopodia were observed on smooth collagen. Actin stress fibers on collagen nanofibers were substantially reduced in comparison to smooth collagen. Live cell tracking revealed that fibroblasts on thin nanofibrous collagen migrated faster than on smooth collagen. In summary, binary collagen scaffolds enabled us for the first time to study cell responses to topographical cues on a single protein scaffold. In future, it will be intriguing to transfer our patterning process to other proteins to study fundamental principles of topography-dependent cell recognition processes.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3