Abstract
Abstract
The bioprinting literature currently lacks: (i) process sensing tools to measure material deposition, (ii) performance metrics to evaluate system performance, and (iii) control tools to correct for and avoid material deposition errors. The lack of process sensing tools limits in vivo functionality of bioprinted parts since accurate material deposition is critical to mimicking the heterogeneous structures of native tissues. We present a process monitoring and control strategy for extrusion-based fabrication that addresses all three gaps to improve material deposition. Our strategy uses a non-contact laser displacement scanner that measures both the spatial material placement and width of the deposited material. We developed a custom image processing script that uses the laser scanner data and defined error metrics for assessing material deposition. To implement process control, the script uses the error metrics to modify control inputs for the next deposition iteration in order to correct for the errors. A key contribution is the definition of a novel method to quantitatively evaluate the accuracy of printed constructs. We implement the process monitoring and control strategy on an extrusion-printing system to evaluate system performance and demonstrate improvement in both material placement and material width.
Funder
University of Illinois at Urbana-Champaign internal funds
National Science Foundation
Subject
Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献