Coacervation-triggered hierarchically assembled hydrogels with application as surgical sealant

Author:

Guo ZhongweiORCID,Wei Zunghang,Sun WeiORCID

Abstract

Abstract Adhesive hydrogels possess great potential to be explored as tissue adhesives, surgical sealants, and hemostats. However, it has been a great challenge to develop hydrogels that can function rapidly and controllably on wet, dynamic biological tissues. Inspired by polyphenol chemistry, we introduce a coacervation-triggered shaping strategy that enables the hierarchical assembly of recombinant human collagen (RHC) and tannic acid (TA). The conformation of the RHC and TA aggregates is controlled to evolve from granular to web-like states, accompanied by the significant enhancement of mechanical and adhesion performance. The coacervation and assembly process is driven by intermolecular interactions, especially hydrogen bonding between RHC and TA. Benefitting from the multifaceted nature of polyphenol chemistry, the hierarchically assembled hydrogels revealed excellent properties as surgical sealing materials, including fast gelation time (within 10 s), clotting time (within 60 s), ultrastretchability (strain >10 000%), and tough adhesion (adhesive strength >250 kPa). In vivo experiments demonstrated complete sealing of severely leaking heart and liver tissues with the assistance of in situ formed hydrogels during 7 d of follow-up. This work presents a highly promising hydrogel-based surgical sealant in wet and dynamic biological environments for future biomedical applications.

Funder

Zhengzhou University

Research and Development Program of China

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3