Cation-crosslinked κ-carrageenan sub-microgel medium for high-quality embedded bioprinting

Author:

Zhang HuaORCID,Luo YangORCID,Hu ZemingORCID,Chen Mengxi,Chen Shang,Yao Yudong,Yao Jie,Shao Xiaoqi,Wu Kerong,Zhu Yabin,Fu Jun

Abstract

Abstract Three-dimensional (3D) bioprinting embedded within a microgel bath has emerged as a promising strategy for creating intricate biomimetic scaffolds. However, it remains a great challenge to construct tissue-scale structures with high resolution by using embedded 3D bioprinting due to the large particle size and polydispersity of the microgel medium, as well as its limited cytocompatibility. To address these issues, novel uniform sub-microgels of cell-friendly cationic-crosslinked kappa-carrageenan (κ-Car) are developed through an easy-to-operate mechanical grinding strategy. These κ-Car sub-microgels maintain a uniform submicron size of around 642 nm and display a rapid jamming-unjamming transition within 5 s, along with excellent shear-thinning and self-healing properties, which are critical for the high resolution and fidelity in the construction of tissue architecture via embedded 3D bioprinting. Utilizing this new sub-microgel medium, various intricate 3D tissue and organ structures, including the heart, lungs, trachea, branched vasculature, kidney, auricle, nose, and liver, are successfully fabricated with delicate fine structures and high shape fidelity. Moreover, the bone marrow mesenchymal stem cells encapsulated within the printed constructs exhibit remarkable viability exceeding 92.1% and robust growth. This κ-Car sub-microgel medium offers an innovative avenue for achieving high-quality embedded bioprinting, facilitating the fabrication of functional biological constructs with biomimetic structural organizations.

Funder

Ningbo Natural Science Foundation

Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province

Key project of Natural Science Foundation of Ningbo City

National Natural Science Foundation of China

State Key Laboratory of Fluid Power and Mechatronic Systems

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3