3D bioprinting of tissue units with mesenchymal stem cells, retaining their proliferative and differentiating potential, in polyphosphate-containing bio-ink

Author:

Neufurth MeikORCID,Wang ShunfengORCID,Schröder Heinz CORCID,Al-Nawas BilalORCID,Wang XiaohongORCID,Müller Werner E GORCID

Abstract

Abstract The three-dimensional (3D)-printing processes reach increasing recognition as important fabrication techniques to meet the growing demands in tissue engineering. However, it is imperative to fabricate 3D tissue units, which contain cells that have the property to be regeneratively active. In most bio-inks, a metabolic energy-providing component is missing. Here a formulation of a bio-ink is described, which is enriched with polyphosphate (polyP), a metabolic energy providing physiological polymer. The bio-ink composed of a scaffold (N,O-carboxymethyl chitosan), a hydrogel (alginate) and a cell adhesion matrix (gelatin) as well as polyP substantially increases the viability and the migration propensity of mesenchymal stem cells (MSC). In addition, this ink stimulates not only the growth but also the differentiation of MSC to mineral depositing osteoblasts. Furthermore, the growth/aggregate pattern of MSC changes from isolated cells to globular spheres, if embedded in the polyP bio-ink. The morphogenetic activity of the MSC exposed to polyP in the bio-ink is corroborated by qRT-PCR data, which show a strong induction of the steady-state-expression of alkaline phosphatase, connected with a distinct increase in the expression ratio between RUNX2 and Sox2. We propose that polyP should become an essential component in bio-inks for the printing of cells that retain their regenerative activity.

Funder

Bundesministerium für Bildung und Forschung

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3