Enhancement of properties of a cell-laden GelMA hydrogel-based bioink via calcium phosphate phase transition

Author:

Kim JueunORCID,Raja NarenORCID,Choi Yeong-JinORCID,Gal Chang-Woo,Sung Aram,Park HonghyunORCID,Yun Hui-sukORCID

Abstract

Abstract To improve the properties of the hydrogel-based bioinks, a calcium phosphate phase transition was applied, and the products were examined. We successfully enhanced the mechanical properties of the hydrogels by adding small amounts (< 0.5 wt%) of alpha-tricalcium phosphate (α-TCP) to photo-crosslinkable gelatin methacrylate (GelMA). As a result of the hydrolyzing calcium phosphate phase transition involving α-TCP, which proceeded for 36 h in the cell culture medium, calcium-deficient hydroxyapatite was produced. Approximately 18 times the compressive modulus was achieved for GelMA with 0.5 wt% α-TCP (20.96 kPa) compared with pure GelMA (1.18 kPa). Although cell proliferation decreased during the early stages of cultivation, both osteogenic differentiation and mineralization activities increased dramatically when the calcium phosphate phase transition was performed with 0.25 wt% α-TCP. The addition of α-TCP improved the printability and fidelity of GelMA, as well as the structural stability and compressive modulus (approximately six times higher) after three weeks of culturing. Therefore, we anticipate that the application of calcium phosphate phase transition to hydrogels may have the potential for hard tissue regeneration.

Funder

Fundamental Research Program of Korea Institute of Materials Science

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

Reference58 articles.

1. 3D bioprinting of tissues and organs;Murphy;Nat. Biotechnol.,2014

2. 3-dimensional bioprinting for tissue engineering applications;Gu;Biomater. Res.,2016

3. Advancing the field of 3D biomaterial printing;Jakus;Biomed. Mater.,2016

4. Printing technologies for medical applications;Shafiee;Trends Mol. Med.,2016

5. Designing biomaterials for 3D printing;Guvendiren;ACS Biomater. Sci. Eng.,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3