Biomimetic human skin model patterned with rete ridges

Author:

Nagarajan Maxwell BORCID,Ainscough Alexander J,Reynolds Daniel S,Uzel Sebastien G M,Bjork Jason WORCID,Baker Bryan A,McNulty Amy K,Woulfe Susan L,Lewis Jennifer AORCID

Abstract

Abstract Rete ridges consist of undulations between the epidermis and dermis that enhance the mechanical properties and biological function of human skin. However, most human skin models are fabricated with a flat interface between the epidermal and dermal layers. Here, we report a micro-stamping method for producing human skin models patterned with rete ridges of controlled geometry. To mitigate keratinocyte-induced matrix degradation, telocollagen–fibrin matrices with and without crosslinks enable these micropatterned features to persist during longitudinal culture. Our human skin model exhibits an epidermis that includes the following markers: cytokeratin 14, p63, and Ki67 in the basal layer, cytokeratin 10 in the suprabasal layer, and laminin and collagen IV in the basement membrane. We demonstrated that two keratinocyte cell lines, one from a neonatal donor and another from an adult diabetic donor, are compatible with this model. We tested this model using an irritation test and showed that the epidermis prevents rapid penetration of sodium dodecyl sulfate. Gene expression analysis revealed differences in keratinocytes obtained from the two donors as well as between 2D (control) and 3D culture conditions. Our human skin model may find potential application for drug and cosmetic testing, disease and wound healing modeling, and aging studies.

Funder

3M, Inc.

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3