FRESH-based 3D bioprinting of complex biological geometries using chitosan bioink

Author:

Chaurasia Parul,Singh Richa,Mahto Sanjeev KumarORCID

Abstract

Abstract Traditional three-dimensional (3D) bioprinting has always been associated with the challenge of print fidelity of complex geometries due to the gel-like nature of the bioinks. Embedded 3D bioprinting has emerged as a potential solution to print complex geometries using proteins and polysaccharides-based bioinks. This study demonstrated the Freeform Reversible Embedding of Suspended Hydrogels (FRESH) 3D bioprinting method of chitosan bioink to 3D bioprint complex geometries. 4.5% chitosan was dissolved in an alkali solvent to prepare the bioink. Rheological evaluation of the bioink described its shear-thinning nature. The power law equation was fitted to the shear rate-viscosity plot. The flow index value was found to be less than 1, categorizing the material as pseudo-plastic. The chitosan bioink was extruded into another medium, a thermo-responsive 4.5% gelatin hydrogel. This hydrogel supports the growing print structures while printing. After this, the 3D bioprinted structure was crosslinked with hot water to stabilize the structure. Using this method, we have 3D bioprinted complex biological structures like the human tri-leaflet heart valve, a section of a human right coronary arterial tree, a scale-down outer structure of the human kidney, and a human ear. Additionally, we have shown the mechanical tunability and suturability of the 3D bioprinted structures. This study demonstrates the capability of the chitosan bioink and FRESH method for 3D bioprinting of complex biological models for biomedical applications.

Publisher

IOP Publishing

Reference41 articles.

1. Bioprinting and its applications in tissue engineering and regenerative medicine;Aljohani;Int. J. Biol. Macromol.,2018

2. 3D bioprinting of tissues and organs | nature biotechnology;Murphy,2014

3. 3D-printed prosthetics roll off the presses;Bhatia,2014

4. 3D printing for the many, not the few | nature biotechnology;Fullerton,2014

5. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep;Lee;Sci. Transl. Med.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3