Polyhydroxybutyrate-based osteoinductive mineralized electrospun structures that mimic components and tissue interfaces of the osteon for bone tissue engineering

Author:

Sriram MORCID,Priya SmritiORCID,Katti Dhirendra SORCID

Abstract

Abstract Scaffolds for bone tissue engineering should enable regeneration of bone tissues with its native hierarchically organized extracellular matrix (ECM) and multiple tissue interfaces. To achieve this, inspired by the structure and properties of bone osteon, we fabricated polyhydroxybutyrate (PHB)-based mineralized electrospun fibrous scaffolds. After studying multiple PHB-based fibers, we chose 7%PHB/1%Gelatin fibers (PG) to fabricate mineralized fibers that mimic mineralized collagen fibers in bone. The mineralized PG (mPG) surface had a rough, hydrophilic layer of low crystalline calcium phosphate which was biocompatible to bone marrow stromal cells (BMSCs), induced their proliferation and was osteoinductive. Subsequently, by modulating the electrospinning process, we fabricated mPG-based novel higher order fibrous scaffolds that mimic the macroscale geometries of osteons of bone ECM. Inspired by the aligned collagen fibers in bone lamellae, we fabricated mPG scaffolds with aligned fibers that could direct anisotropic elongation of mouse BMSC (mBMSCs). Further, we fabricated electrospun mPG-based osteoinductive tubular constructs which can mimic cylindrical bone components like osteons or lamellae or be used as long bone analogues based on their dimensions. Finally, to regenerate tissue interfaces in bone, we introduced a novel bi-layered scaffold-based approach. An electrospun bi-layered tubular construct that had PG in the outer layer and 7%PHB/0.5%Polypyrrole fibers (PPy) in the inner layer was fabricated. The bi-layered tubular construct underwent preferential surface mineralization only on its outer layer. This outer mineralized layer supported osteogenesis while the inner PPy layer could support neural cell growth. Thus, the bi-layered tubular construct may be used to regenerate haversian canal in the osteons which hosts nerve fibers. Overall, the study introduced novel techniques to fabricate biomimetic structures that can regenerate components of bone osteon and its multiple tissue interfaces. The study lays foundation for the fabrication of a modular scaffold that can regenerate bone with its hierarchical structure and complex tissue interfaces.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3