Abstract
Abstract
Carbon nanotubes (CNTs) have attracted increasing attention in the field of peripheral nerve tissue engineering due to their unique structural and physical characteristics. In this study, a novel type of aligned conductive scaffolds composed of polycaprolactone (PCL) and CNTs were fabricated via electrospinning. Utilizing mussel-inspired polydopamine (PDA) surface modification, brain-derived neurotrophic factor (BDNF) was loaded onto PCL/CNT fibrous scaffolds to obtain PCL/CNT-PDA-BDNF fibrous scaffolds capable of the sustained release of BDNF over 28 d. Schwann cells were cultured on these scaffolds, and the effect of the scaffolds on peripheral nerve regeneration in vitro was assessed by studying cell proliferation, morphology and the expressions of myelination-related genes S100, P0 and myelin basic protein. Furthermore, the effect of these scaffolds on peripheral nerve regeneration in vivo was investigated using a 10 mm rat sciatic nerve defect model. Both the in vitro and in vivo results indicate that PCL/CNT-PDA-BDNF fibrous scaffolds effectively promote sciatic nerve regeneration and functional recovery. Therefore, PCL/CNT-PDA-BDNF fibrous scaffolds have great potential for peripheral nerve restoration.
Funder
National Natural Science Foundation of China
Beijing Natural Science Foundation of China
Shenzhen Science and Technology Plan Project of China
Subject
Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献