Multicellular 3D bioprinted human gallbladder carcinoma for in vitro mimicry of tumor microenvironment and intratumoral heterogeneity

Author:

Jin YukaiORCID,Zhang Jiangang,Xing JialiORCID,Li Yiran,Yang Huiyu,Ouyang LiujianORCID,Fang Zhiyuan,Sun Lejia,Jin Bao,Huang Pengyu,Yang HuayuORCID,Du Shunda,Sang Xinting,Mao YileiORCID

Abstract

Abstract Gallbladder carcinoma (GBC) is a malignant hepatobiliary cancer characterized by an intricate tumor microenvironments (TME) and heterogeneity. The traditional GBC 2D culture models cannot faithfully recapitulate the characteristics of the TME. Three-dimensional (3D) bioprinting enables the establishment of high-throughput and high-fidelity multicellular GBC models. In this study, we designed a concentric cylindrical tetra-culture model to reconstitute the spatial distribution of cells in tumor tissue, with the inner portion containing GBC cells, and the outer ring containing a mixture of endothelial cells, fibroblasts, and macrophages. We confirmed the survival, proliferation, biomarker expression and gene expression profiles of GBC 3D tetra-culture models. Hematoxylin-eosin (HE) and immunofluorescence staining verified the morphology and robust expression of GBC/endothelial/fibroblast/macrophage biomarkers in GBC 3D tetra-culture models. Single-cell RNA sequencing revealed two distinct subtypes of GBC cells within the model, glandular epithelial and squamous epithelial cells, suggesting the mimicry of intratumoral heterogeneity. Comparative transcriptome profile analysis among various in vitro models revealed that cellular interactions and the TME in 3D tetra-culture models reshaped the biological processes of tumor cells to a more aggressive phenotype. GBC 3D tetra-culture models restored the characteristics of the TME as well as intratumoral heterogeneity. Therefore, this model is expected to have future applications in tumor biology research and antitumor drug development.

Funder

Special clinical research project of central high-level hospital of Peking Union Medical College Hospital

National Natural Science Foundation of China

Tsinghua University-Peking Union Medical College Hospital Cooperation Project

Beijing Natural Science Foundation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3