Curcumin nanoparticles combined with 3D printed bionic tumor models for breast cancer treatment

Author:

Su Ya,Hu Xueyan,Kang Yue,Zhang Cheng,Cheng Yuen Yee,Jiao Zeren,Nie Yi,Song KedongORCID

Abstract

Abstract Compared with conventional therapeutic approaches, nanomedicines are attracting a growing interest due to their better targeting ability, higher delivery efficiency, and good water solubility. However, conventional drug efficacy assessment methods are based on a two-dimensional (2D) culture approach of single cells to obtain in vitro therapeutic effects, which may not be representative of actual tumors. Based on the above considerations, the three-dimensional (3D) cell culture models became a better choice since they can increase the complexity of in vitro systems and provide a biomimetic microenvironment that is closer to the in vivo native than 2D cultures. In our study, curcumin nanoparticle (CurNPs) with good water solubility and good tumor therapeutic effects were prepared by combining polymeric non-ionic surfactant (Pluronic F127) with curcumin. The hybrid scaffolds based on nano-clay, sodium alginate, and gelatin were also prepared, which showed good printability and excellent biocompatibility. We then studied the therapeutic effects of CurNPs on metastatic breast cancer using a 3D tumor model fabricated with scaffold-bound metastatic breast cancer (MDA-MB-231) cells. It was showed that the 3D cell model presented better cell proliferation effect while compared with 2D version. Additionally, there was good enhanced permeability and retention effect when CurNPs entered with better accumulate in 3D cell ‘tumor’ sites which represented more realistic response of a more real tumor treatment effect for breast cancer cells. Our study indicated that the combinational of nanomaterials with 3D cell ‘tumor’ models provided an alternative and better platform for drug screening and has great potential be used as safe and effective treatment screening for breast cancer.

Funder

the Fundamental Research Funds for the Central Universities

the Fok Ying Tung Education Foundation

National Natural Science Foundation of China

the State Key Laboratory of Fine Chemicals

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3