A nasal airway-on-chip model to evaluate airflow pre-conditioning during epithelial cell maturation at the air-liquid interface

Author:

Walls Amanda C,van Vegchel Manon,Lakey Abigail,Gauri Hemali,Dixon Joshua,Ferreira Laís A,Tandon Ishita,Balachandran KartikORCID

Abstract

Abstract The function of a well-differentiated nasal epithelium is largely affected by airflow-induced wall shear stress, yet few in vitro models recapitulate this dynamic condition. Models which do expose cells to airflow exclusively initiate flow after the differentiation process has occurred. In vivo, basal cells are constantly replenishing the epithelium under airflow conditions, indicating that airflow may affect the development and function of the differentiated epithelium. To address this gap in the field, we developed a physiologically relevant microphysiological model of the human nasal epithelium and investigated the effects of exposing cells to airflow during epithelial maturation at the air-liquid interface. The nasal airway-on-chip platform was engineered to mimic bi-directional physiological airflow during normal breathing. Primary human nasal epithelial cells were seeded on chips and subjected to either: (1) no flow, (2) single flow (0.5 dyne cm−2 flow on Day 21 of ALI only), or (3) pre-conditioning flow (0.05 dyne cm−2 on Days 14–20 and 0.5 dyne cm−2 flow on Day 21) treatments. Cells exposed to pre-conditioning showed decreased morphological changes and mucus secretions, as well as decreased inflammation, compared to unconditioned cells. Our results indicate that flow exposure only post-differentiation may impose acute stress on cells, while pre-conditioning may potentiate a properly functioning epithelium in vitro.

Funder

U.S. Department of Defense

National Science Foundation

University of Arkansas Honors College

Publisher

IOP Publishing

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3