Efficient hepatic differentiation of hydrogel microsphere-encapsulated human pluripotent stem cells for engineering prevascularized liver tissue

Author:

Deng Shuai,Zhao Xiaoyu,Zhu Yanlun,Tang Ning,Wang Rongliang,Zhang Xuerao,Qu Fuyang,Ho Yi-PingORCID,Lee Wayne Yuk-WaiORCID,Chen JiansuORCID,Li Mingqiang,Tao Yu,Chan Hon FaiORCID

Abstract

Abstract Liver tissue engineering is promising as an alternative strategy to treat liver failure. However, generating functional hepatocytes from stem cells is conventionally restricted by the immature status of differentiated cells. Besides, embedding hepatocytes in bulk scaffold is limited by a lack of vascularity and low cell-packing density. Here, we fabricate collagen type I (COL1) microspheres for efficient hepatic differentiation of pluripotent stem cells and subsequent assembly of prevascularized liver tissue (PLT). Using a microfluidic platform, we demonstrate that hydrogel COL1 microspheres (mCOL1) encapsulating human embryonic stem cells (hESCs) can be reproducibly generated and efficiently differentiated into hepatocyte-like cells (HLCs) microspheres for the first time. Compared with other culture configurations such as encapsulation of hESC in a bulk COL1 hydrogel and 2D monolayer culture, mCOL1 with high uniformity produce HLC microspheres of improved maturity based on comprehensive analyses of cell morphology, transcriptome profile, hepatic marker expression and hepatic functions. In addition, these HLC microspheres can be applied as building blocks to self-assemble with endothelial cells to construct a dense PLT. The PLT resembles native liver tissue with high cell-packing density, shows successful engraftment in mice liver following implantation, and exhibits improved hepatic function in vivo. Overall, it is believed that this multiscale technology will advance the fabrication of stem cell-based liver tissue for regenerative medicine, drug screening, and in vitro liver modeling.

Funder

Innovation and Technology Commission

Research Grants Council, University Grants Committee

Research and Development Program of China

The Chinese University of Hong Kong

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3