Uniform cerebral organoid culture on a pillar plate by simple and reproducible spheroid transfer from an ultralow attachment well plate

Author:

Acharya Prabha,Joshi Pranav,Shrestha Sunil,Choi Na Young,Jeong Sehoon,Lee Moo-YealORCID

Abstract

Abstract Human induced pluripotent stem cell (iPSC)-derived brain organoids have potential to recapitulate the earliest stages of brain development, serving as an effective in vitro model for studying both normal brain development and disorders. However, current brain organoid culture methods face several challenges, including low throughput, high variability in organoid generation, and time-consuming, multiple transfer and encapsulation of cells in hydrogels throughout the culture. These limitations hinder the widespread application of brain organoids including high-throughput assessment of compounds in clinical and industrial lab settings. In this study, we demonstrate a straightforward approach of generating multiple cerebral organoids from iPSCs on a pillar plate platform, eliminating the need for labor-intensive, multiple transfer and encapsulation steps to ensure the reproducible generation of cerebral organoids. We formed embryoid bodies in an ultra-low attachment 384-well plate and subsequently transferred them to the pillar plate containing Matrigel, using a straightforward sandwiching and inverting method. Each pillar on the pillar plate contains a single spheroid, and the success rate of spheroid transfer was in a range of 95%–100%. Using this approach, we robustly generated cerebral organoids on the pillar plate and demonstrated an intra-batch coefficient of variation below 9%–19% based on ATP-based cell viability and compound treatment. Notably, our spheroid transfer method in combination with the pillar plate allows miniaturized culture of cerebral organoids, alleviates the issue of organoid variability, and has potential to significantly enhance assay throughput by allowing in situ organoid assessment as compared to conventional organoid culture in 6-/24-well plates, petri dishes, and spinner flasks.

Funder

National Center for Advancing Translational Sciences

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3