Abstract
Abstract
The delivery of oxygen within tissue engineered constructs is essential for cell survivability; however, achieving this within larger biofabricated constructs poses a significant challenge. Efforts to overcome this limitation often involve the delivery of synthetic oxygen generating compounds. The application of some of these compounds is problematic for the biofabrication of living tissues due to inherent issues such as cytotoxicity, hyperoxia and limited structural stability due to oxygen inhibition of radical-based crosslinking processes. This study aims to develop an oxygen delivering system relying on natural-derived components which are cytocompatible, allow for photopolymerization and advanced biofabrication processes, and improve cell survivability under hypoxia (1% O2). We explore the binding of human hemoglobin (Hb) as a natural oxygen deposit within photopolymerizable allylated gelatin (GelAGE) hydrogels through the spontaneous complex formation of Hb with negatively charged biomolecules (heparin, hyaluronic acid, and bovine serum albumin). We systematically study the effect of biomolecule inclusion on cytotoxicity, hydrogel network properties, Hb incorporation efficiency, oxygen carrying capacity, cell viability, and compatibility with 3D-bioassembly processes within melt electrowritten (MEW) scaffolds. All biomolecules were successfully incorporated within GelAGE hydrogels, displaying controllable mechanical properties and cytocompatibility. Results demonstrated efficient and tailorable Hb incorporation within GelAGE-Heparin hydrogels. The developed system was compatible with microfluidics and photopolymerization processes, allowing for the production of GelAGE-Heparin-Hb spheres. Hb-loaded spheres were assembled into MEW polycaprolactone scaffolds, significantly increasing the local oxygen levels. Ultimately, cells within Hb-loaded constructs demonstrated good cell survivability under hypoxia. Taken together, we successfully developed a hydrogel system that retains Hb as a natural oxygen deposit post-photopolymerization, protecting Hb from free-radical oxidation while remaining compatible with biofabrication of large constructs. The developed GelAGE-Heparin-Hb system allows for physoxic oxygen delivery and thus possesses a vast potential for use across broad tissue engineering and biofabrication strategies to help eliminate cell death due to hypoxia.
Funder
Division of Health Sciences, University of Otago
Penny and Phil Knight Campus for Accelerating Scientific Impact
Wu Tsai Human Performance Alliance
New Zealand Health Research Council
Royal Society Te Apārangi
The Medical Research Foundation of Oregon
Bradshaw and Holzapfel Research Professor in Transformational Science and Mathematics Fund
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献