User-friendly microfluidic manufacturing of hydrogel microspheres with sharp needle

Author:

Shao LeiORCID,Pan Bingchu,Hou RuxiaORCID,Jin YuanORCID,Yao Yudong

Abstract

Abstract Hydrogel microspheres are flexible microstructures with many fascinating functions, such as three-dimensional cell culture, injection therapy, drug delivery, organoids and microtissues construction. The traditional methods of manufacturing hydrogel microspheres more or less have some shortcomings, such as atomization/emulsion method with uneven sizes; piezoelectric-/thermal-/electric-assisted inkjet with high cell damage and unknown cell growth effects; microfluidic manufacturing with sophisticated microdevices etc, which lead to poor user experiences. Here, we designed a user-friendly microfluidic device to generate hydrogel microspheres with sharp needles that can be replaced at will. Specifically, a commercial tapered opening sharp needle was inserted into a transparent silicone tube with the tapered opening facing the upper wall of the silicone tube. Then, gelatin methacrylate (GelMA) solution and paraffin oil were pumped into the sharp needle and the silicone tube respectively. GelMA microdroplets were formed under the shear stress of the silicone tube and the oil phase, and after being photo-crosslinked in situ, GelMA microspheres with uniform and adjustable sizes can be generated. Due to the simplicity of our original device, heterogeneous microspheres such as Janus, core–shell and hollow microspheres can be easily manufactured by simple modification of the device. In addition, we demonstrated the strong flexibility and maneuverability of the microspheres through macroscopic free assembly. Finally, we prepared different cell-laden GelMA microspheres, and the cells showed stretching behavior similar to that in vivo after a short period culture, which indicated the high bioactivity of GelMA microspheres. Meanwhile, we cultured the Janus cell-laden GelMA microspheres and the assembly of cell-laden GelMA microspheres, where the cells stretched and interacted, demonstrating the potential of GelMA microspheres for co-culture and fabrication of large-scale tissue constructs. In view of the above results, our user-friendly microfluidic manufacturing method of hydrogel microspheres with sharp needles will provide great convenience to relevant researchers.

Funder

State Key Laboratory of Fluid Power and Mechatronic Systems

General scientific Research Project of Zhejiang Education Department

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3