Bio-inspired zonal-structured matrices for bone-cartilage interface engineering

Author:

Golebiowska Aleksandra,Nukavarapu Syam PrasadORCID

Abstract

Abstract Design and development of scaffold structures for osteochondral (OC) interface regeneration is a significant engineering challenge. Recent efforts are aimed at recapitulating the unique compositional and hierarchical structure of an OC interface. Conventional scaffold fabrication techniques often have limited design control and reproducibility, and the development of OC scaffolds with zonal hierarchy and structural integrity between zones is especially challenging. In this study, a series of multi-zonal and gradient structures were designed and fabricated using three-dimensional (3D) bioprinting. We developed OC scaffolds with bi-phasic and tri-phasic configurations to support the zonal structure of OC tissue, and gradient scaffold configurations to enable smooth transitions between the zones to more closely mimic a bone-cartilage interface. A biodegradable polymer, polylactic acid (PLA), was used for the fabrication of zonal/gradient scaffolds to provide mechanical strength and support OC function. The formation of the multi-zonal and gradient scaffolds was confirmed through SEM imaging and micro-CT scanning. Precisely controlled hierarchy with tunable porosity along the scaffold length established the formation of the bio-inspired scaffolds with different zones/gradient structure. In addition, we also developed a novel bioprinting method to selectively introduce cells into desired scaffold zones of the zonal/gradient scaffolds via concurrent printing of a cell-laden hydrogel within the porous template. Live/dead staining of the cell-laden hydrogel introduced in the cartilage zone showed uniform cell distribution with high cell viability. Overall, our study developed bio-inspired scaffold structures with structural hierarchy and mechanical integrity for bone-cartilage interface engineering.

Funder

NSF EFMA

National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3