Chondrogenic preconditioning of mesenchymal stem/stromal cells within a magnetic scaffold for osteochondral repair

Author:

Zhang JiabinORCID,Zhang Ming,Lin Rongcai,Du Yuguang,Wang Liming,Yao Qingqiang,Zannettino Andrew,Zhang Hu

Abstract

Abstract Stem cell therapy using mesenchymal stem/stromal cells (MSCs) represents a novel approach to treating severe diseases, including osteoarthritis. However, the therapeutic benefit of MSCs is highly dependent on their differentiation state, which can be regulated by many factors. Herein, three-dimensional (3D) magnetic scaffolds were successfully fabricated by incorporating magnetic nanoparticles (MNPs) into electrospun gelatin nanofibers. When positioned near a rotating magnet (f = 0.5 Hz), the magnetic scaffolds with the embedded MSCs were driven upward/downward in the culture container, which induced mechanical stimulation to MSCs due to spatial confinement and fluid flow. The extracellular matrix-mimicking scaffold and the alternating magnetic field significantly enhanced chondrogenesis instead of osteogenesis. Furthermore, the fiber topography could be tuned with different compositions of the coating layer on MNPs, and the topography had a significant impact on MSC differentiation. Selective up-regulation of chondrogenesis-related genes (COL2A1 and ACAN) was found for the magnetic scaffolds with citric acid-coated MNPs (CAG). In contrast, osteogenesis-related genes (RUNX2 and SPARC) were selectively and significantly up-regulated for the magnetic scaffolds with polyvinylpyrrolidone-coated MNPs. Prior to implantation in vivo, chondrogenic preconditioning of MSCs within the CAG scaffolds under a dynamic magnetic field resulted in superior osteochondral repair. Hence, the magnetic scaffolds together with an in-house rotating magnet device could be a novel platform to initiate multiple stimuli on stem cell differentiation for effective repair of osteochondral defects.

Funder

ARC Discovery Project

Science and Technology Project of Jiangsu Province

National Natural and Science Foundation of China

Talent Introduction Program of Postdoctoral International Exchange Program

China Postdoctoral Science Foundation

Keck Graduate Institute’s Start-up Fund

Publisher

IOP Publishing

Subject

Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3