Abstract
Abstract
Oral mucositis (OM) is a debilitating complication affecting roughly 70% of head and neck cancer patients receiving chemotherapy and/or radiation treatment. No broadly effective preventative treatment for OM exists. Therefore, an in vitro model of cancer treatment-induced OM would aid studies into possible origins of the pathology and future drug targets to ameliorate it. In this study, we present a microfluidic oral mucosa triculture tissue construct consisting of a keratinocyte layer attached to a subepithelial fibroblast and endothelial cell-embedded collagen gel. To address the typically low stability of mucosal constructs in microfluidics, ruthenium-catalyzed photocrosslinking was implemented to strengthen the collagen gel and prevent the invasion of keratinocytes, thus maintaining tissue construct geometry and oral mucosa barrier function for over 18 d of culture. Next, the OM chip was exposed to cisplatin (day 10) and damaging radiation (day 11, ± cisplatin at day 10), mimicking damage from cancer therapy. Damage to and then recovery of the tissue layers and function were observed over days 11–18. Therefore, several important features of OM induction and resolution were modeled in microfluidic culture. The OM model on a chip allows for more sophisticated studies into mechanisms of OM and potential treatments.
Funder
National Institute of Dental and Craniofacial Research
National Institute of General Medical Sciences
Sigma Xi
Cosmos Club Foundation
Subject
Biomedical Engineering,General Medicine,Biomaterials,Biochemistry,Bioengineering,Biotechnology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献