High-yield extracellular vesicle production from HEK293T cells encapsulated in 3D auxetic scaffolds with cyclic mechanical stimulation for effective drug carrier systems

Author:

Chen Yi-Wen,Lin Yen-HongORCID,Ho Chia-Che,Chen Cheng-Yu,Yu Min-Hua,Lee Alvin Kai-Xing,Chiu Shao-Chih,Cho Der-Yang,Shie Ming-YouORCID

Abstract

Abstract Extracellular vesicles (EVs) show promise in drug loading and delivery for medical applications. However, the lack of scalable manufacturing processes hinders the generation of clinically suitable quantities, thereby impeding the translation of EV-based therapies. Current EV production relies heavily on non-physiological two-dimensional (2D) cell culture or bioreactors, requiring significant resources. Additionally, EV-derived ribonucleic acid cargo in three-dimensional (3D) and 2D culture environments remains largely unknown. In this study, we optimized the biofabrication of 3D auxetic scaffolds encapsulated with human embryonic kidney 293 T (HEK293 T) cells, focusing on enhancing the mechanical properties of the scaffolds to significantly boost EV production through tensile stimulation in bioreactors. The proposed platform increased EV yields approximately 115-fold compared to conventional 2D culture, possessing properties that inhibit tumor progression. Further mechanistic examinations revealed that this effect was mediated by the mechanosensitivity of YAP/TAZ. EVs derived from tensile-stimulated HEK293 T cells on 3D auxetic scaffolds demonstrated superior capability for loading doxorubicin compared to their 2D counterparts for cancer therapy. Our results underscore the potential of this strategy for scaling up EV production and optimizing functional performance for clinical translation.

Funder

National Science and Technology Council

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3