JWST’s PEARLS: Improved Flux Calibration for NIRCam

Author:

Ma ZhiyuanORCID,Yan HaojingORCID,Sun BangzhengORCID,Cohen Seth H.ORCID,Jansen Rolf A.ORCID,Summers JakeORCID,Windhorst Rogier A.ORCID,D’Silva Jordan C. J.ORCID,Koekemoer Anton M.ORCID,Coe DanORCID,Conselice Christopher J.ORCID,Driver Simon P.ORCID,Frye BrendaORCID,Grogin Norman A.ORCID,Marshall Madeline A.ORCID,Nonino MarioORCID,Ortiz RafaelORCID,Pirzkal NorORCID,Robotham AaronORCID,Ryan Russell E.ORCID,Willmer Christopher N. A.ORCID,Hammel Heidi B.ORCID,Milam Stefanie N.ORCID,Adams Nathan J.ORCID,Cheng ChengORCID,Hathi Nimish P.ORCID

Abstract

Abstract The Prime Extragalactic Areas for Reionization and Lensing Science, a James Webb Space Telescope (JWST) GTO program, obtained a set of unique NIRCam observations that have enabled us to significantly improve the default photometric calibration across both NIRCam modules. The observations consisted of three epochs of 4-band (F150W, F200W, F356W, and F444W) NIRCam imaging in the Spitzer IRAC Dark Field (IDF). The three epochs were six months apart and spanned the full duration of Cycle 1. As the IDF is in the JWST continuous viewing zone, we were able to design the observations such that the two modules of NIRCam, modules A and B, were flipped by 180° and completely overlapped each other’s footprints in alternate epochs. We were therefore able to directly compare the photometry of the same objects observed with different modules and detectors, and we found significant photometric residuals up to ∼0.05 mag in some detectors and filters, for the default version of the calibration files that we used (jwst_1039.pmap). Moreover, there are multiplicative gradients present in the data obtained in the two long-wavelength bands. The problem is less severe in the data reduced using the latest pmap (jwst_1130.pmap as of 2023 September), but it is still present, and is non-negligible. We provide a recipe to correct for this systematic effect to bring the two modules onto a more consistent calibration, to a photometric precision better than ∼0.02 mag.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3