The Automatic Observation Management System of the GWAC Network. I. System Architecture and Workflow

Author:

Han XuhuiORCID,Xiao Yujie,Zhang PinPin,Turpin Damien,Xin Liping,Wu Chao,Cai Hongbo,Dong Wenlong,Huang Lei,Kang Zhe,Leroy Nicolas,Li Huali,Li Zhenwei,Lu Xiaomeng,Qiu Yulei,Stahl Benjamin E.,Wang Jing,Wang Xianggao,Xu Yang,Yang YuanguiORCID,Zhao Yong,Zhang Ruosong,Zheng Weikang,Zheng Yatong,Wei Jianyan

Abstract

Abstract The Ground Wide Angle Camera Network (GWAC-N) is a network of robotic multi-aperture, multiple field-of-view (FoV) optical telescopes. The main contingent of GWAC-N instruments are provided by the Ground Wide Angle Cameras Array (GWAC-A), and additional, narrower FoV telescopes are utilized to provide fast multi-band follow-up capabilities. The primary scientific goal of the GWAC-N is to search for optical counterparts of gamma-ray bursts that will be detected by the Space Variable Object Monitor (SVOM) satellite. The GWAC-N performs many additional observing tasks including follow-up of Target of Opportunities (ToO) targets and the detection (and monitoring) of variable objects and optical transients. To handle these use cases (and to allow for extensibility), we have designed ten observation modes and 175 observation strategies, including a joint strategy with multiple GWAC-N telescopes for the follow-up of gravitational wave (GW) events. To perform these observations, we develop an Automatic Observation Management (AOM) system capable of performing object management, dynamic scheduling, automatic broadcasting across the network, and image handling. The AOM system combines the individual telescopes which comprise the GWAC-N into a network and smoothly organizes all associated operations, completely meeting the requirements dictated by GWAC-N. With its modular design, the AOM is scientifically and technically viable for other general-purpose telescope networks. As the GWAC-N extends and evolves, the AOM will greatly enhance its discovery potential. In this first paper of a series, we present the scientific goals of the GWAC-N and detail the hardware, software, and workflow developed to achieve these goals. The structure, technical design, implementation, and performance of the AOM system are also described in detail. We conclude with a summary of the current status of the GWAC-N and our near-future development plan.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3