Abstract
Abstract
The study of solar activity holds special importance since the changes in our star’s behavior affect both the Earth’s atmosphere and the conditions of the interplanetary environment. They can interfere with air navigation, space flight, satellites, radar, high-frequency communications, and overhead power lines, and can even negatively influence human health. We present here a machine learning-based prediction of the evolution of the current sunspot cycle (solar cycle 25). First, we analyze the Fourier Transform of the total time series (from 1749 to 2022) to find periodicities with which to lag this series and then add attributes (predictors) to the forecasting models to obtain the most accurate result possible. Consequently, we build a trained model of the series considering different starting points (from 1749 to 1940, with 1 yr steps), applying Random Forests, Support Vector Machines, Gaussian Processes, and Linear Regression. We find that the model with the lowest error in the test phase (cycle 24) arises with Random Forest and with 1915 as the start year of the time series (yielding a Root Mean Squared Error of 9.59 sunspots). Finally, for cycle 25 this model predicts that the maximum number of sunspots (90) will occur in 2025 March.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献