Outlier Prediction and Training Set Modification to Reduce Catastrophic Outlier Redshift Estimates in Large-scale Surveys

Author:

Wyatt M.,Singal J.

Abstract

Abstract We present results of using individual galaxies’ probability distribution over redshift as a method of identifying potential catastrophic outliers in empirical photometric redshift estimation. In the course of developing this approach we develop a method of modification of the redshift distribution of training sets to improve both the baseline accuracy of high redshift (z > 1.5) estimation as well as catastrophic outlier mitigation. We demonstrate these using two real test data sets and one simulated test data set spanning a wide redshift range (0 < z < 4). Results presented here inform an example “prescription” that can be applied as a realistic photometric redshift estimation scenario for a hypothetical large-scale survey. We find that with appropriate optimization, we can identify a significant percentage (>30%) of catastrophic outlier galaxies while simultaneously incorrectly flagging only a small percentage (<7% and in many cases <3%) of non-outlier galaxies as catastrophic outliers. We find also that our training set redshift distribution modification results in a significant (>10) percentage point decrease of outlier galaxies for z > 1.5 with only a small (<3) percentage point increase of outlier galaxies for z < 1.5 compared to the unmodified training set. In addition, we find that this modification can in some cases cause a significant (∼20) percentage point decrease of galaxies which are non-outliers but which have been incorrectly identified as outliers, while in other cases cause only a small (<1) increase in this metric.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3