Machine Learning for Searching the Dark Energy Survey for Trans-Neptunian Objects

Author:

Henghes B.ORCID,Lahav O.,Gerdes D. W.,Lin H. W.,Morgan R.,Abbott T. M. C.,Aguena M.,Allam S.,Annis J.,Avila S.,Bertin E.,Brooks D.,Burke D. L.,Rosell A. Carnero,Kind M. Carrasco,Carretero J.,Conselice C.,Costanzi M.,da Costa L. N.,De Vicente J.,Desai S.,Diehl H. T.,Doel P.,Everett S.,Ferrero I.,Frieman J.,García-Bellido J.,Gaztanaga E.,Gruen D.,Gruendl R. A.,Gschwend J.,Gutierrez G.,Hartley W. G.,Hinton S. R.,Honscheid K.,Hoyle B.,James D. J.,Kuehn K.,Kuropatkin N.,Marshall J. L.,Melchior P.,Menanteau F.,Miquel R.,Ogando R. L. C.,Palmese A.,Paz-Chinchón F.,Plazas A. A.,Romer A. K.,Sánchez C.,Sanchez E.,Scarpine V.,Schubnell M.,Serrano S.,Smith M.,Soares-Santos M.,Suchyta E.,Tarle G.,To C.,Wilkinson R. D.

Abstract

Abstract In this paper we investigate how implementing machine learning could improve the efficiency of the search for Trans-Neptunian Objects (TNOs) within Dark Energy Survey (DES) data when used alongside orbit fitting. The discovery of multiple TNOs that appear to show a similarity in their orbital parameters has led to the suggestion that one or more undetected planets, an as yet undiscovered “Planet 9”, may be present in the outer solar system. DES is well placed to detect such a planet and has already been used to discover many other TNOs. Here, we perform tests on eight different supervised machine learning algorithms, using a data set consisting of simulated TNOs buried within real DES noise data. We found that the best performing classifier was the Random Forest which, when optimized, performed well at detecting the rare objects. We achieve an area under the receiver operating characteristic (ROC) curve, (AUC) = 0.996 ± 0.001. After optimizing the decision threshold of the Random Forest, we achieve a recall of 0.96 while maintaining a precision of 0.80. Finally, by using the optimized classifier to pre-select objects, we are able to run the orbit-fitting stage of our detection pipeline five times faster.

Funder

Science and Technology Facilities Council

Instituto Nacional de Ciência e Tecnologia do e-Universo

FP7 Ideas: European Research Council

Office of Science

Ministerio de Ciencia e Innovación

NOIRLab Prop.

National Science Foundation

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3