Machine Learning for Searching the Dark Energy Survey for Trans-Neptunian Objects
-
Published:2020-12-10
Issue:1019
Volume:133
Page:014501
-
ISSN:0004-6280
-
Container-title:Publications of the Astronomical Society of the Pacific
-
language:
-
Short-container-title:PASP
Author:
Henghes B.ORCID, Lahav O., Gerdes D. W., Lin H. W., Morgan R., Abbott T. M. C., Aguena M., Allam S., Annis J., Avila S., Bertin E., Brooks D., Burke D. L., Rosell A. Carnero, Kind M. Carrasco, Carretero J., Conselice C., Costanzi M., da Costa L. N., De Vicente J., Desai S., Diehl H. T., Doel P., Everett S., Ferrero I., Frieman J., García-Bellido J., Gaztanaga E., Gruen D., Gruendl R. A., Gschwend J., Gutierrez G., Hartley W. G., Hinton S. R., Honscheid K., Hoyle B., James D. J., Kuehn K., Kuropatkin N., Marshall J. L., Melchior P., Menanteau F., Miquel R., Ogando R. L. C., Palmese A., Paz-Chinchón F., Plazas A. A., Romer A. K., Sánchez C., Sanchez E., Scarpine V., Schubnell M., Serrano S., Smith M., Soares-Santos M., Suchyta E., Tarle G., To C., Wilkinson R. D.
Abstract
Abstract
In this paper we investigate how implementing machine learning could improve the efficiency of the search for Trans-Neptunian Objects (TNOs) within Dark Energy Survey (DES) data when used alongside orbit fitting. The discovery of multiple TNOs that appear to show a similarity in their orbital parameters has led to the suggestion that one or more undetected planets, an as yet undiscovered “Planet 9”, may be present in the outer solar system. DES is well placed to detect such a planet and has already been used to discover many other TNOs. Here, we perform tests on eight different supervised machine learning algorithms, using a data set consisting of simulated TNOs buried within real DES noise data. We found that the best performing classifier was the Random Forest which, when optimized, performed well at detecting the rare objects. We achieve an area under the receiver operating characteristic (ROC) curve, (AUC) = 0.996 ± 0.001. After optimizing the decision threshold of the Random Forest, we achieve a recall of 0.96 while maintaining a precision of 0.80. Finally, by using the optimized classifier to pre-select objects, we are able to run the orbit-fitting stage of our detection pipeline five times faster.
Funder
Science and Technology Facilities Council Instituto Nacional de Ciência e Tecnologia do e-Universo FP7 Ideas: European Research Council Office of Science Ministerio de Ciencia e Innovación NOIRLab Prop. National Science Foundation
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|