Enhancing Direct Exoplanet Spectroscopy with Apodizing and Beam Shaping Optics

Author:

Calvin BenjaminORCID,Jovanovic NemanjaORCID,Ruane GarrethORCID,Pezzato Jacklyn,Colborn Jennah,Echeverri Daniel,Schofield Tobias,Porter Michael,Wallace J. Kent,Delorme Jacques-RobertORCID,Mawet Dimitri

Abstract

Abstract Direct exoplanet spectroscopy aims to measure the spectrum of an exoplanet while simultaneously minimizing the light collected from its host star. Isolating the planet light from the starlight improves the signal-to-noise ratio (S/N) per spectral channel when noise due to the star dominates, which may enable new studies of the exoplanet atmosphere with unprecedented detail at high spectral resolution (>30,000). However, the optimal instrument design depends on the flux level from the planet and star compared to the noise due to other sources, such as detector noise and thermal background. Here we present the design, fabrication, and laboratory demonstration of specially-designed optics to improve the S/N in two potential regimes in direct exoplanet spectroscopy with adaptive optics instruments. The first is a pair of beam-shaping lenses that increase the planet signal by improving the coupling efficiency into a single-mode fiber at the known position of the planet. The second is a grayscale apodizer that reduces the diffracted starlight for planets at small angular separations from their host star. The former especially increases S/N when dominated by detector noise or thermal background, while the latter helps reduce stellar noise. We show good agreement between the theoretical and experimental point spread functions in each case and predict the exposure time reduction (∼33%) that each set of optics provides in simulated observations of 51 Eridani b using the Keck Planet Imager and Characterizer instrument at W. M. Keck Observatory.

Funder

Jet Propulsion Laboratory

Heising-Simons Foundation

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phase II of the Keck Planet Imager and characterizer: system-level laboratory characterization and preliminary on-sky commissioning;Ground-based and Airborne Instrumentation for Astronomy IX;2022-08-29

2. Design considerations of photonic lanterns for diffraction-limited spectrometry;Techniques and Instrumentation for Detection of Exoplanets X;2021-09-01

3. Learning the lantern: neural network applications to broadband photonic lantern modeling;Journal of Astronomical Telescopes, Instruments, and Systems;2021-06-29

4. Design considerations of photonic lanterns for diffraction-limited spectrometry;Journal of the Optical Society of America B;2021-06-17

5. Fundamental limit of single-mode integral-field spectroscopy;Journal of the Optical Society of America B;2021-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3