Abstract
Abstract
Limburg, in the border region between Belgium, Germany and the Netherlands, has been identified as the Euregio Meuse–Rhine candidate site for Einstein Telescope. The site hosting this gravitational-wave observatory must minimize the Newtonian coupling of ground vibrations to the core optics of the low-frequency detectors. Newtonian noise depends on the ambient seismic field which is in turn dependent on the site’s geology and the distribution of surface and underground seismic-noise sources. We have characterized the site near Terziet in Limburg in terms of propagation modes, dispersion and angular distribution of seismic noise by employing sensor arrays on the surface. Attenuation of seismic noise with depth was studied with a borehole sensor. Based on the results of these measurements, a realistic seismic-field model has been derived that represents a complete solution of the elastodynamic wave equations for a horizontally-layered soil structure. This seismic-field model allows to estimate the Newtonian-noise contribution to the sensitivity of Einstein Telescope for the characteristic geology and ambient noise conditions in South Limburg. The site’s geology features soft-soil layers on hard-rock and is effective in attenuating Newtonian noise from surface waves below the required sensitivity. A random background of body waves with all possible angles of incidence is expected to constitute the dominant source of Newtonian noise.
Funder
Dutch Research Council
SENSEIS
STW Open Technology Programme
Subject
Physics and Astronomy (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献