A linear response relation for perturbed Einstein’s equations with a Langevin source: applications to perturbations in compact stars

Author:

Satin SeemaORCID

Abstract

Abstract A new linear response relation for the perturbed Einstein’s equation is introduced. We give the idea of considering the metric perturbations as a linear response to the fluid (matter) perturbations in strong gravity regions. This can be meaningful when the perturbations in the system are driven by sources internal to the fluid (matter) in the relativistic star. The aim is to study the strong regions embedding the compact matter like that of the internal structure of relativistic stars, with this new framework. The formulations are specifically done to address the generalized stochastic perturbations which can arise in the dense matter at intermediate scales. These internally sourced perturbations lead to the possibility of equilibrium and non-equilibrium (dynamical or thermal) statistical analysis for the properties of compact matter at the sub-hydro mesoscopic scales, which are yet unexplored. A general relativistic Langevin formalism, defining a random driving source and its analytical solutions for a simple example are given. With a first principles approach, this new framework and its potential towards building up a theme of research in asteroseismology is discussed.

Funder

DST

IISER Pune, India

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3