Casimir wormholes in Brans–Dicke theory

Author:

Hadi Ziaie AmirORCID,Reza Mehdizadeh MohammadORCID

Abstract

Abstract In recent years there has been a growing interest in the field of wormhole physics in the presence of Casimir effect. As this effect provides negative energy density, it can be utilized as an ideal candidate for the exotic matter required for creating a traversable wormhole. In the context of modified theories of gravity such as Brans–Dicke (BD) theory (Brans and Dicke 1961 Phys. Rev. 124 925), wormhole geometries have been vastly investigated. However, the scientific literature is silent on the issue of BD wormholes in the presence of Casimir energy. Our aim in the present study is to seek for static spherically symmetric solutions representing wormhole configurations in BD theory with Casimir energy as the supporting matter. The Casimir setup we assume comprises two electrically neutral, infinitely large parallel planes placed in a vacuum. We then consider the Casimir vacuum energy density of a scalar field in such a configuration with Dirichlet and mixed boundary conditions. In the former case the corresponding Casimir force is attractive and in the latter this force is repulsive. We present exact zero tidal force wormhole solutions as well as those with non vanishing redshift function for both types of Casimir energies. The conditions on wormhole solutions along with the weak (WEC) and null (NEC) energy conditions put constraints on the values of BD coupling parameter. These constraints are also subject to the value of BD scalar field at the throat and the throat radius. We therefore find that BD wormholes in the presence of Casimir energy can exist without violating NEC and WEC (for the repulsive Casimir force). Finally, we examine the equilibrium condition for stability of the obtained solutions using Tolman–Oppenheimer–Volkoff equation.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3