Cosmology in Minkowski space

Author:

Lombriser LucasORCID

Abstract

Abstract Theoretical and observational challenges to standard cosmology such as the cosmological constant problem and tensions between cosmological model parameters inferred from different observations motivate the development and search of new physics. A less radical approach to venturing beyond the standard model is the simple mathematical reformulation of our theoretical frameworks underlying it. While leaving physical measurements unaffected, this can offer a reinterpretation and even solutions of these problems. In this spirit, metric transformations are performed here that cast our Universe into different geometries. Of particular interest thereby is the formulation of cosmology in Minkowski space. Rather than an expansion of space, spatial curvature, and small-scale inhomogeneities and anisotropies, this frame exhibits a variation of mass, length and time scales across spacetime. Alternatively, this may be interpreted as an evolution of fundamental constants. As applications of this reframed cosmological picture, the naturalness of the cosmological constant is reinspected and promising candidates of geometric origin are explored for dark matter, dark energy, inflation and baryogenesis. An immediate observation thereby is the apparent absence of the cosmological constant problem in the Minkowski frame. The formalism is also applied to identify new observable signatures of conformal inhomogeneities, which have been proposed as simultaneous solution of the observational tensions in the Hubble constant, the amplitude of matter fluctuations, and the gravitational lensing amplitude of cosmic microwave background anisotropies. These are found to enhance redshifts to distant galaxy clusters and introduce a mass bias with cluster masses inferred from gravitational lensing exceeding those inferred kinematically or dynamically.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference45 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3