Gravitomagnetism and galaxy rotation curves: a cautionary tale

Author:

Lasenby A NORCID,Hobson M P,Barker W E VORCID

Abstract

Abstract We investigate recent claims that gravitomagnetic effects in linearised general relativity can explain flat and rising rotation curves, such as those observed in galaxies, without the need for dark matter. If one models a galaxy as an axisymmetric, stationary, rotating, non-relativistic and pressureless ‘dust’ of stars in the gravitoelectromagnetic (GEM) formalism, we show that gravitomagnetic effects on the circular velocity v of a star are O ( 10 6 ) smaller than the standard Newtonian (gravitoelectric) effects and thus any modification of galaxy rotation curves must be negligible, as might be expected. Moreover, we find that gravitomagnetic effects are O ( 10 6 ) too small to provide the vertical support necessary to maintain the dynamical equilibrium assumed in such a model. These issues are obscured if one constructs a single equation for v, as considered previously. We nevertheless solve this equation for a galaxy having a Miyamoto–Nagai density profile since this allows for both an exact numerical integration and an accurate analytic approximation. We show that for the values of the mass, M, and semi-major and semi-minor axes, a and b, typical for a dwarf galaxy, the rotation curve depends only very weakly on M, and becomes independent of it for larger M values. Moreover, for aspect ratios a / b > 2 , the rotation curves are concave over their entire range, which does not match observations in any galaxy. Most importantly, we show that for the poloidal gravitomagnetic flux ψ to provide the necessary vertical support, it must become singular at the origin and have extremely large values near to it. This originates from the unwitting, but forbidden, inclusion of free-space solutions of the Poisson-like equation that determines ψ and also clearly contradicts the linearised treatment implicit in the GEM formalism, hence ruling out the methodology in the form used as a means of explaining flat galaxy rotation curves. We further show that recent deliberate attempts to leverage such free-space solutions against the rotation curve problem yield no deterministic modification outside the thin disk approximation, and that, in any case, the homogeneous contributions to ψ are ruled out by the boundary value problem posed by any physical axisymmetric galaxy.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3