The interface of gravity and dark energy

Author:

Lackeos KristenORCID,Lieu RichardORCID

Abstract

Abstract At sufficiently large radii dark energy modifies the behavior of (a) bound orbits around a galaxy and (b) virialized gas in a cluster of galaxies. Dark energy also provides a natural cutoff to a cluster’s dark matter halo. In (a) there exists a maximum circular orbit beyond which periodic motion is no longer possible, and orbital evolution near critical binding is analytically calculable using an adiabatic invariant integral. The finding implicates the study of wide galaxy pairs. In (b), dark energy necessitates the use of a generalized Virial Theorem to describe gas at the outskirts of a cluster. When coupled to the baryonic escape condition, aided by dark energy, the results is a radius beyond which the continued establishment of a hydrostatic halo of thermalized baryons is untenable. This leads to a theoretically motivated virial radius. We use this theory to probe the structure of a cluster’s baryonic halo and apply it to X-ray and weak-lensing data collected on cluster Abell 1835. We find that gas in its outskirts deviates significantly from hydrostatic equilibrium beginning at 1.3 Mpc , the ‘inner’ virial radius. We also define a model dependent dark matter halo cutoff radius to A1835. The dark matter cutoff gives an upper limit to the cluster’s total mass of 7 × 10 15 M . Moreover, it is possible to derive an ‘outer’ hydrostatic equilibrium cutoff radius given a dark matter cutoff radius. A region of cluster gas transport and turbulence occurs between the inner and outer cutoff radii.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3