Abstract
Abstract
We calculate the energy density and pressure of a scalar field after its decoupling from a thermal bath in the spatially flat Friedman–Lemaître–Robertson–Walker space-time, within the framework of quantum statistical mechanics. By using the density operator determined by the condition of local thermodynamic equilibrium, we calculate the mean value of the stress-energy tensor of a real scalar field by subtracting the vacuum expectation value at the time of the decoupling. The obtained expressions of energy density and pressure involve corrections with respect to the classical free-streaming solution of the relativistic Boltzmann equation, which may become relevant even at long times.
Subject
Physics and Astronomy (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献