Topology-induced quantum transition in multiparticle systems in vicinity of a black hole

Author:

Jacak J EORCID

Abstract

Abstract The qualitative change of the type of particle trajectory homotopy in close vicinity of general-relativistic gravitational singularity affects quantum statistics in systems of identical indistinguishable particles at passing the photon sphere rim of a Schwarzschild black hole. This causes a local departure from the Pauli exclusion principle, which results in some high energy effects manifesting themselves when the matter is falling into a black hole. The release of the energy can take place at the rim of the photon sphere of a black hole due to the decay of Fermi spheres in highly compressed fermion systems entering this region. The effect is observable at activity of quasars or at collapses of neutron star mergers. The related supplementation to conventional models of the accretion disc luminosity by additional radiation from close vicinity of the event horizon of a massive black hole powering super-luminous quasar is proposed and compared with observations. The source of short-lasting gamma-ray bursts has been also identified at collapses of unstable neutron star mergers due to the decay of Fermi sphere of neutrons. The duration and spectrum of the related e-m radiation bursts estimated by the Fermi golden rule for the Fermi sphere decay agree with observations. The quantum statistics effect contributes also to the radiation of transients of micro-quasars and short lasting brightening episodes in closer active galactic nuclei. The proposed quantum effect changes the premises for the current discussion of the information paradox and hypothesis of the black hole firewall.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3