Tidally-induced nonlinear resonances in EMRIs with an analogue model

Author:

Bronicki DavidORCID,Cárdenas-Avendaño AlejandroORCID,Stein Leo CORCID

Abstract

AbstractOne of the important targets for the future space-based gravitational wave observatory Laser Interferometer Space Antenna is extreme mass ratio inspirals (EMRIs), where long and accurate waveform modeling is necessary for detection and characterization. Modeling EMRI dynamics requires accounting for effects such as the ones induced by an external tidal field, which can break integrability at resonances and cause significant dephasing. In this paper, we use a Newtonian analogue of a Kerr black hole to study the effect of an external tidal field on the dynamics and the gravitational waveform. We have developed a numerical framework that takes advantage of the integrability of the background system to evolve it with a symplectic splitting integrator, and compute approximate gravitational waveforms to estimate the timescale over which the perturbation affects the dynamics. Comparing this timescale with the characteristic time under radiation reaction at resonance, we introduce a tool for quantifying the regime in which tidal effects might be included when modeling EMRI gravitational waves. As an application of this framework, we perform a detailed analysis of the dynamics at one resonance to show how different entry points into the resonance in phase-space can produce substantially different dynamics, and how one can estimate bounds for the parameter space where tidal effects may become dominant. Such bounds will scale asεCq, whereɛmeasures the strength of the external tidal field,qis the mass ratio, andCis a number which depends on the resonance and the shape of the tide. We demonstrate how to estimateCusing our framework for the 2:3 radial to polar frequency resonance in our model system. This framework can serve as a proxy for proper modeling of the tidal perturbation in the fully relativistic case.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference63 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3