Abstract
Abstract
An intermediate mass black hole (IMBH) may have a dark matter (DM) minihalo around it and develop a spiky structure called DM minispike. Gravitational waves (GWs) can be produced if a stellar compact object, such as a black hole or neutron star, inspirals into the IMBH. This kind of systems are known as intermediate-mass-ratio-inspirals (IMRIs) and may be observed by space-based GW detectors including LISA, Taiji and Tianqin. In this paper, we lay the foundations for the construction of analytic expressions for Fourier-domain GWs produced by eccentric IMRIs with DM minispikes in a post-circular or small-eccentricity approximation (e < 0.4). We take the effect of dynamical friction from the DM as a perturbation, and decompose the dynamical equations into perturbed part and unperturbed part. The equations are solved in a series expansion form about zero initial eccentricity to eighth order. The time-dependent, ‘plus’ and ‘cross’ polarizations are expanded in Bessel functions, which are then self-consistently reexpanded in a power series about zero initial eccentricity. The stationary-phase approximation is then employed to obtain the explicit DM-modified analytic expressions for the Fourier transform of the post-circular expanded, time-domain signal. We exemplify this framework by considering a typical IMRI with a DM minispike and find the GW detectability strongly depends on the radial profile of the DM distribution. When the density of DM is large enough, the signal to noise ratio will be degraded significantly and a detection loss may occur if we use a template without the effect of DM to treat a signal including the DM effect. With the Fourier-domain gravitational waveforms we also estimate the accuracy of the measurement of the DM minispike parameters in our reference model. Our framework hold the promise to construct a ‘ready-to-use’ Fourier-domain waveforms for data analysis of eccentric IMRIs with DM minispikes.
Funder
National Key Research and Development Program of China Grant
NSFC