Abstract
Abstract
In this work we investigate the relation between curved momentum space and momentum-dependent gauge fields. While the former is a classic idea that has been shown to be tied to minimal-length models, the latter constitutes a relatively recent development in quantum gravity phenomenology. In particular, the gauge principle in momentum space amounts to a modification of the position operator of the form
X
ˆ
μ
→
X
ˆ
μ
−
g
A
μ
(
P
ˆ
)
akin to a gauge-covariant derivative in momentum space according to the minimal coupling prescription. Here, we derive both effects from a Kaluza–Klein reduction of a higher-dimensional geometry exhibiting curvature in momentum space. The interplay of the emerging gauge fields as well as the remaining curved momentum space lead to modifications of the Heisenberg algebra. While the gauge fields imply Moyal-type noncommutativity dependent on the analogue field strength tensor, the dimensionally reduced curved momentum space geometry translates to a Snyder-type noncommutative geometry.
Funder
European Cooperation in Science and Technology
Foundational Questions Institute
Subject
Physics and Astronomy (miscellaneous)
Reference67 articles.
1. Noncommutative field theory;Douglas;Rev. Mod. Phys.,2001
2. Hydrogen atom spectrum and the Lamb shift in noncommutative QED;Chaichian;Phys. Rev. Lett.,2001
3. Noncommutative black holes, the final appeal to quantum gravity: a review;Nicolini;Int. J. Mod. Phys. A,2009
4. Quantification of gravitational waves;Bronstein;Zh. Eksp. Teor. Fiz.,1930
5. Quantentheorie schwacher Gravitationsfelder;Bronstein;Phys. Z. Sowjetunion,1936
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献