Abstract
Abstract
The Koutras–McIntosh family of metrics include conformally flat pp-waves and the Wils metric. It appeared in a paper of 1996 by Koutras–McIntosh as an example of a pure radiation spacetime without scalar curvature invariants or infinitesimal symmetries. Here we demonstrate that these metrics have no ‘hidden symmetries’, by which we mean Killing tensors of low degrees. For the particular case of Wils metrics we show the nonexistence of Killing tensors up to degree 6. The technique we use is the geometric theory of overdetermined PDEs and the Cartan prolongation–projection method. Application of those allows to prove the nonexistence of polynomial in momenta integrals for the equation of geodesics in a mathematical rigorous way. Using the same technique we can completely classify all lower degree Killing tensors and, in particular, prove that for generic conformally flat pp-waves all Killing tensors of degree 3 and 4 are reducible.
Funder
Tromsø Forskningsstiftelse
Subject
Physics and Astronomy (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献