HPC-driven computational reproducibility in numerical relativity codes: a use case study with IllinoisGRMHD

Author:

Luo YufengORCID,Zhang QianORCID,Haas RolandORCID,Etienne Zachariah BORCID,Allen GabrielleORCID

Abstract

Abstract Reproducibility of results is a cornerstone of the scientific method. Scientific computing encounters two challenges when aiming for this goal. Firstly, reproducibility should not depend on details of the runtime environment, such as the compiler version or computing environment, so results are verifiable by third-parties. Secondly, different versions of software code executed in the same runtime environment should produce consistent numerical results for physical quantities. In this manuscript, we test the feasibility of reproducing scientific results obtained using the IllinoisGRMHD code that is part of an open-source community software for simulation in relativistic astrophysics, the Einstein Toolkit. We verify that numerical results of simulating a single isolated neutron star with IllinoisGRMHD can be reproduced, and compare them to results reported by the code authors in 2015. We use two different supercomputers: Expanse at SDSC, and Stampede2 at TACC. By compiling the source code archived along with the paper on both Expanse and Stampede2, we find that IllinoisGRMHD reproduces results published in its announcement paper up to errors comparable to round-off level changes in initial data parameters. We also verify that a current version of IllinoisGRMHD reproduces these results once we account for bug fixes which have occurred since the original publication.

Funder

Office of Advanced Cyberinfrastructure

High Energy Physics

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference31 articles.

1. Reproducibility is a process, not an achievement: the replicability of IR reproducibility experiments;Lin,2020

2. The FAIR Guiding Principles for scientific data management and stewardship

3. FAIR for research software (FAIR4RS) WG,2022

4. Towards FAIR principles for research software;Martinez,2020

5. RDA | research data sharing without barriers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3