Pupil aberrations correction of the afocal telescope for the TianQin project

Author:

Fan ZichaoORCID,Ji Huiru,Mo Yan,Tan Hao,Chu WenXue,Zhao Lujia,Cao Shengyi,Ma DonglinORCID

Abstract

Abstract TianQin is a planned Chinese space-based gravitational wave (GW) observatory with a frequency band of 10−4–1 Hz. Optical telescopes are essential for the delivery of the measurement beam to support a precise distance measurement between pairs of proof masses. As the design is driven by the interferometric displacement sensitivity requirements, the stability control of optical path length (OPL) is extremely important beyond the traditional requirement of diffraction-limited imaging quality. The recurring tilt-to-length (TTL) coupling noise arises from the OPL variation due to the wavefront deformation and angular misalignment. Reducing the residual chief ray aberration in the optical design helps suppress TTL coupling noise. To correct the pupil aberrations, we derive primary pupil aberrations in a series expansion form, and then refine the formulation of merit function by combining the pupil aberration theory and traditional image aberration theory. The automatic correction of pupil aberrations is carried out by using the macro programming in the commercial optical software Zemax, leading to a high performance telescope design. The design results show that on one side the pupil aberrations have been corrected, and on the other side, its optical performance meets the requirements for TianQin project. The RMS wavefront error over the science field of view (FOV) is less than λ/200 and the maximum TTL coupling noise over the entire ±300 μrad FOV is 0.0152 nm µrad−1 . We believe that our design approach can be a good guide for the space telescope design in any other space-based GW detection project, as well as other similar optical systems.

Funder

Science, Technology, and Innovation Commission of Shenzhen Municipality

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3