Dynamic and thermodynamic stability of charged perfect fluid stars

Author:

Shi KaiORCID,Tian YuORCID,Wu XiaoningORCID,Zhang HongbaoORCID,Zhang Jingchao

Abstract

Abstract We perform a thorough analysis of the dynamic and thermodynamic stability for the charged perfect fluid star by applying the Wald formalism to the Lagrangian formulation of Einstein–Maxwell-charged fluid system. As a result, we find that neither the presence of the additional electromagnetic field nor the Lorentz force experienced by the charged fluid makes any obstruction to the key steps towards the previous results obtained for the neutral perfect fluid star. Therefore, the criterion for the dynamic stability of our charged star in dynamic equilibrium within the symplectic complement of the trivial perturbations with the Arnowitt-Deser-Misner (ADM) 3-momentum unchanged is given by the non-negativity of the canonical energy associated with the timelike Killing field, where it is further shown for both non-axisymmetric and axisymmetric perturbations that the dynamic stability against these restricted perturbations also implies the dynamic stability against more generic perturbations. On the other hand, the necessary condition for the thermodynamic stability of our charged star in thermodynamic equilibrium is given by the positivity of the canonical energy of all the linear on-shell perturbations with the ADM angular momentum unchanged in the comoving frame, which is equivalent to the positivity of the canonical energy associated with the timelike Killing field when restricted onto the axisymmetric perturbations. As a by-product, we further establish the equivalence of the dynamic and thermodynamic stability with respect to the spherically symmetric perturbations of the static, spherically symmetric isentropic charged star.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3