Abstract
Abstract
We introduce the so-called static-fluid solutions in 2+1-dimensional spacetime. We assume the spacetime to be static and circular symmetric and for the perfect fluid we consider an equation of state (EoS) of the form
p
r
=
−
1
3
ρ
r
where r is the radial coordinate. Since, unlike the 3+1-dimensions, in 2+1-dimensions there is no vacuum solution other than the flat spacetime, our approach is not exactly the same as the 3+1-dimensions such that the static-fluid is accompanied by a cosmological constant. In addition to that, at first, we present a static solution supported by a static-fluid of constant energy-momentum tensor with a general EoS. Then, in the nonconstant energy-momentum tensor case, we introduce a large class of solutions. Depending on the values of the integration constants it implies black holes, wormholes, or cosmological solutions. Some of these solutions are closed in two-space which are considered for the first time in 2+1-dimensions. In both cases i.e. the constant and nonconstant energy-momentum tensor we imposed the satisfaction of conservation of the energy-momentum i.e.
∇
μ
T
μ
ν
=
0
.
Subject
Physics and Astronomy (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献