Critique of the use of geodesics in astrophysics and cosmology

Author:

Mannheim Philip DORCID

Abstract

Abstract Since particles obey wave equations, in general one is not free to postulate that particles move on the geodesics associated with test particles. Rather, for this to be the case one has to be able to derive such behavior starting from the equations of motion that the particles obey, and to do so one can employ the eikonal approximation. To see what kind of trajectories might occur we explore the domain of support of the propagators associated with the wave equations, and extend the results of some previous propagator studies that have appeared in the literature. For a minimally coupled massless scalar field the domain of support in curved space is not restricted to the light cone, while for a conformally coupled massless scalar field the curved space domain is only restricted to the light cone if the scalar field propagates in a conformal to flat background. Consequently, eikonalization does not in general lead to null geodesics for curved space massless rays even though it does lead to straight line trajectories in flat spacetime. Equal remarks apply to the conformal invariant Maxwell equations. However, for massive particles one does obtain standard geodesic behavior this way, since they do not propagate on the light cone to begin with. Thus depending on how big the curvature actually is, in principle, even if not necessarily in practice, the standard null-geodesic-based gravitational bending formula and the general behavior of propagating light rays are in need of modification in regions with high enough curvature. We show how to appropriately modify the geodesic equations in such situations. We show that relativistic eikonalization has an intrinsic light-front structure, and show that eikonalization in a theory with local conformal symmetry leads to trajectories that are only globally conformally symmetric. Propagation of massless particles off the light cone is a curved space reflection of the fact that when light travels through a refractive medium in flat spacetime its velocity is modified from its free flat spacetime value. In the presence of gravity spacetime itself acts as a medium, and this medium can then take light rays off the light cone. This is also manifest in a conformal invariant scalar field theory propagator in two spacetime dimensions. It takes support off the light cone, doing so in fact even if the geometry is conformal to flat. We show that it is possible to obtain eikonal trajectories that are exact without approximation, and show that normals to advancing wavefronts follow these exact eikonal trajectories, with these trajectories being the trajectories along which energy and momentum are transported. In general then, in going from flat space to curved space one does not generalize flat space geodesics to curved space geodesics. Rather, one generalizes flat space wavefront normals (normals that are geodesic in flat space) to curved space wavefront normals, and in curved space normals to wavefronts do not have to be geodesic.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3