Infrared effects and the Unruh state

Author:

Anderson Paul RORCID,Gholizadeh Siahmazgi Shohreh,Scofield Zachary P

Abstract

Abstract Detailed behaviors of the modes of quantized scalar fields in the Unruh state for various eternal black holes in two dimensions are investigated. It is shown that the late-time behaviors of some of the modes of the quantum fields and of the symmetric two-point function are determined by infrared effects. The nature of these effects depends upon whether there is an effective potential in the mode equation and what form this potential takes. Here, three cases are considered, one with no potential and two with potentials that are nonnegative everywhere and are zero on the event horizon of the black hole and zero at either infinity or the cosmological horizon. Specifically, the potentials are a delta function potential and the potential that occurs for a massive scalar field in Schwarzschild–de Sitter spacetime. In both cases, scattering effects remove infrared divergences in the mode functions that would otherwise arise from the normalization process. When such infrared divergences are removed, it is found that the modes that are positive frequency with respect to the Kruskal time on the past black hole horizon approach zero in the limit that the radial coordinate is fixed and the time coordinate goes to infinity. In contrast, when there is no potential and thus infrared divergences occur, the same modes approach nonzero constant values in the late-time limit when the radial coordinate is held fixed. The behavior of the symmetric two-point function when the field is in the Unruh state is investigated for the case of a delta function potential in certain asymptotically flat black hole spacetimes in two dimensions. The removal of the infrared divergences in the mode functions results in the elimination of terms that grow linearly in time.

Funder

Division of Physics

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3