On the microstructure of higher-dimensional Reissner–Nordström black holes in quantum regime

Author:

Masood A S Bukhari SyedORCID,Pourhassan BehnamORCID,Aounallah Houcine,Wang Li-GangORCID

Abstract

Abstract Thermodynamic Riemannian geometry provides great insights into the microscopic structure of black holes (BHs). One such example is the Ruppeiner geometry which is the metric space comprising the second derivatives of entropy with respect to other extensive variables of the system. Reissner–Nordström black holes (RNBHs) are known to be endowed with a flat Ruppeiner geometry for all higher spacetime dimensions. However this holds true if one invokes classical gravity where the semi-classical Bekenstein–Hawking entropy best describes the thermodynamics of the system. If the much deeper quantum gravity and string theories entail modifications to BH entropy, this prompts the question whether the Ruppeiner flatness associated with higher dimensional RNBHs still persists. We investigate this problem by considering non-perturbative (exponential) and perturbative (logarithmic) modifications to BH entropy of a 5D RNBH. We find that while the case is so for larger (classical) geometries, the situation is radically altered for smaller (quantum) geometries. Namely, we show surprising emergence of multiple phase transitions that depend on the choice of extent of corrections to BH entropy and charge. Our consideration involves differentiated extremal and non-extremal geometric scales corresponding to the validity regime of corrections to entropy. More emphasis is laid on the exponential case as the contributions become highly non-trivial on small scales. An essential critical mass scale arises in this case that marks the onset of these phase transitions while the BH diminishes in size via Hawking evaporation. We contend that this critical value of mass perhaps best translates as the epoch of a classical to quantum BH phase transition.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3