Metric perturbations of Kerr spacetime in Lorenz gauge: circular equatorial orbits

Author:

Dolan Sam RORCID,Durkan LeanneORCID,Kavanagh ChrisORCID,Wardell BarryORCID

Abstract

Abstract We construct the metric perturbation in Lorenz gauge for a compact body on a circular equatorial orbit of a rotating black hole (Kerr) spacetime, using a newly-developed method of separation of variables. The metric perturbation is formed from a linear sum of differential operators acting on Teukolsky mode functions, and certain auxiliary scalars, which are solutions to ordinary differential equations in the frequency domain. For radiative modes, the solution is uniquely determined by the s = ± 2 Weyl scalars, the s = 0 trace, and s = 0 , 1 gauge scalars whose amplitudes are determined by imposing continuity conditions on the metric perturbation at the orbital radius. The static (zero-frequency) part of the metric perturbation, which is handled separately, also includes mass and angular momentum completion pieces. The metric perturbation is validated against the independent results of a 2+1D time domain code, and we demonstrate agreement at the expected level in all components, and the absence of gauge discontinuities. In principle, the new method can be used to determine the Lorenz-gauge metric perturbation at a sufficiently high precision to enable accurate second-order self-force calculations on Kerr spacetime in future. We conclude with a discussion of extensions of the method to eccentric and non-equatorial orbits.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3