Motion equations in a Kerr–Newman–de Sitter spacetime: some methods of integration and application to black holes shadowing in Scilab

Author:

Garnier ArthurORCID

Abstract

Abstract In this paper, we recall some basic facts about the Kerr–Newman–(anti) de Sitter (KNdS) spacetime and review several formulations and integration methods for the geodesic equation of a test particle in such a spacetime. In particular, we introduce some basic general symplectic integrators in the Hamiltonian formalism and we re-derive the separated motion equations using Carter’s method. After this theoretical background, we explain how to ray-trace a KNdS black hole, equipped with a thin accretion disk, using Scilab. We compare the accuracy and execution time of the previous methods, concluding that the Carter equations is the best one. Then, inspired by Hagihara, we apply Weierstrass’ elliptic functions to the non-rotating case, yielding a fairly fast shadowing program for such a spacetime. We provide some illustrations of the code, including a depiction of the effects of the cosmological constant on shadows and accretion disk, as well as a simulation of M87*.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference49 articles.

1. The motion of charged particles in the field of rotating charged black holes and naked singularities;Balek;Bull. Astron. Inst. Czech.,1989

2. Line emission from an accretion disk around a rotating black hole: toward a measurement of frame dragging;Bromley;Astrophys. J.,1997

3. Maximal analytic extension of the Kerr metric;Boyer;J. Math. Phys.,1967

4. Testing general relativity with high-resolution imaging of Sgr A*;Broderick;J. Phys.: Conf. Ser.,2006

5. Generalized, energy-conserving numerical simulations of particles in general relativity. I. Time-like and null geodesics;Bacchini;Astrophys. J. Suppl. Ser.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3