Necessity of quantizable geometry for quantum gravity

Author:

Mehta A KORCID

Abstract

Abstract In this paper, Dirac Quantization of 3D gravity in the first-order formalism is attempted where instead of quantizing the connection and triad fields, the connection and the triad 1-forms themselves are quantized. The exterior derivative operator on the space of differential forms is treated as the ‘time’ derivative to compute the momenta conjugate to these 1-forms. This manner of quantization allows one to compute the transition amplitude in 3D gravity which has a close, but not exact, match with the transition amplitude computed via LQG techniques. This inconsistency is interpreted as being due to the non-quantizable nature of differential geometry.

Publisher

IOP Publishing

Reference14 articles.

1. On the global evolution problem in 2+ 1 gravity;Anderson;J. Geom. Phys.,1997

2. An introduction to quantum cosmology;Wiltshire,1995

3. String Theory

4. On the origin of gravity and the laws of Newton;Verlinde;J. High Energy Phys.,2011

5. Exploring the nature of gravity;Padmanabhan,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3