Effect of the cosmological parameters on gravitational waves: general analysis

Author:

Espriu DomènecORCID,Rodoreda MarcORCID

Abstract

Abstract Some time ago it was pointed out that the presence of cosmological components could affect the propagation of gravitational waves (GW) beyond the usual cosmological redshift and that such effects might be observable in pulsar timing arrays (PTA). These analyses were done at leading order in the Hubble constant H 0, which is proportional to Λ 1 2 and ρ i 1 2 (ρ i being the various cosmological fluid densities). In this work, we study in detail the propagation of metric perturbations on a Schwarzschild–de Sitter (SdS) background, close to the place where GW are produced, and obtain solutions that incorporate corrections linear in ρ i and Λ. At the next-to-leading order the corrections do not appear in the form of H 0 thus lifting the degeneracy among the various cosmological components. We also determine the leading corrections proportional to the mass of the final object; they are very small for the distances considered in PTA but may be of relevance in other cases. When transformed into comoving coordinates, the ones used in cosmological measurements, this SdS solution does satisfy the perturbation equations in a Friedmann–Lemaître–Robertson–Walker metric up to and including Λ 3 2 terms. This analysis is then extended to the other cosmological fluids, allowing us to consider GW sources in the Gpc range. Finally, we investigate the influence of these corrections in PTA observations.

Funder

ICCUB

Generalitat de Catalunya

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3